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Abstract: In this paper, we present a three step method for characterizing geologic deposits for liquefaction potential using sample based
liquefaction probability values. The steps include statistically characterizing the sample population, evaluating the spatial correlation of
the population, and finally providing a local and/or global estimate of the distribution of high liquefaction probability values for the
deposit. When spatial correlation is present, ordinary kriging can be used to evaluate spatial clustering of high liquefaction probability
values within a geologic unit which in turn can be used in a regional liquefaction potential characterization. If spatial correlation is not
present in the data, then a global estimate can be used to estimate the percentage of samples within the deposit which have a high
liquefaction probability. By describing the liquefaction potential with a binomial distribution �high versus low�, a global estimate can
provide an estimate of the mean as well as uncertainty in the estimate. To demonstrate the method, we used a dense data set of subsurface
borings to identify and characterize liquefiable deposits for hazard mapping in Cambridge, Mass.
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Introduction

Regional liquefaction hazard mapping projects have predomi-
nantly relied on criteria that relate surficial geology to liquefac-
tion susceptibility �Youd and Perkins 1978�. Geologic units are
identified by their age and depositional environment and then
characterized in terms of their susceptibility. This method leads to
the identification of large regions of susceptible material. The
resulting maps show geologic units that likely contain liquefiable
sediments but do not identify the location or extent of liquefiable
sediments within the geologic unit. Therefore, within a suscep-
tible unit, maybe only a very small area will actually liquefy
given an earthquake. We set out to provide more information on
the likelihood of liquefaction in a susceptible unit using global
and local population estimates paired with a dense collection of
geotechnical data.

Regional liquefaction susceptibility maps will never provide
detailed enough information for absolute susceptibility at a site
level and are not meant to, but a more thorough characterization
than currently used will lead to a more accurate assessment
of susceptibility or liquefaction potential. We propose a method
for evaluating the distribution of liquefiable soils within a geo-
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logic unit. Our method combines data from the regional and local
scale, where the regional data includes surficial geology and
the local data includes soil sample data with calculated lique-
faction probabilities. Using the local data, we propose a three
step method to provide a global and when possible a local �spa-
tial� estimate of the population of liquefiable materials in the
geologic deposit. Our proposed method is demonstrated on a case
study in Cambridge, Mass. where a dense collection of subsurface
test borings was assembled to characterize potentially liquefiable
materials. Additional information on the case study dataset and
liquefaction hazard can be found in Baise and Brankman �2004�.

Background

As liquefaction hazard mapping projects proliferate around the
country and the world, the mapping method has remained
relatively constant. Most of the existing liquefaction suscepti-
bility maps are based solely on geology. For example, the lique-
faction susceptibility maps for the San Francisco Bay Area
provided on the Association of Bay Area Governments website
�http://quake.abag.ca.gov/� are a direct interpretation of the
susceptibility of surficial deposits based on surficial geology
mapping of the region �Knudsen et al. 2000�. Currently, many
liquefaction mapping projects include the concurrent collection
of subsurface data to provide local data for the susceptibility or
liquefaction potential estimate. The subsurface data may include
standard penetration test �SPT� N-values, cone penetrometer test
�CPT� data, shear-wave velocity �Vs� data, soil descriptions �in-
cluding grain size distributions�, stratigraphy, and groundwater
data. Generally, a scattered sample of subsurface data is collected
in the susceptible unit and used to characterize that unit; however,
the maps are still primarily based on surficial geology. Recent
studies in Victoria, B.C.; Alameda, Berkeley, Emeryville,
Oakland, and Piedmont, Calif.; San Francisco Bay area, Calif.;
and Memphis and Shelby Counties, Tenn. have used subsurface

test borings logs to supplement the characterization of susceptible
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deposits �Monahan et al. 1998; Knudsen et al. 2000; Monahan
et al. 2000; Broughton et al. 2001; Holzer et al. 2002�. Knudsen
et al. �2000� used available boring logs to estimate the peak
ground acceleration required to cause liquefaction �following the
Seed and Idriss �1971� simplified approach�. The susceptibility
category for geologic units was then derived from a combination
of observations of historic liquefaction, peak ground acceleration
necessary to cause liquefaction, ground water level, and geology-
based susceptibility. Broughton et al. �2001� also used boring logs
in their analysis of liquefaction susceptibility maps for Memphis
and Shelby Counties, Tenn. Their maps were produced strictly by
geologic methods and the analysis of boring logs �following the
Seed and Idriss �1971� simplified approach� was used to verify
the results in a qualitative way.

When regional liquefaction hazard mapping is attempted in a
city, numerous locations of subsurface data are often available.
Rather than 10 subsurface borings over a square kilometer, 1,000
subsurface borings are available. With a dense array of sub-
surface data, the characterization of units becomes more
complete. The relative liquefaction hazard maps produced for
Victoria, B.C. depended on the interpretation of stratigraphy
derived from over 5,000 boring logs �Monahan et al., 2000�. The
hazard classification for the Victoria maps was based on an inter-
pretation of the stratigraphy represented in the boring logs and a
detailed analysis of 31 borings. The detailed analysis consisted of
a combination of a probabilistic prediction of liquefaction using
the Seed and Idriss �1971� simplified approach and a probability
of liquefaction severity index which depends on depth and thick-
ness of the liquefiable materials �Monahan et al. 1998, 2000�. Six
stratigraphic units were characterized using anywhere from 1 to
11 borings. The susceptibility classifications took into account the
variability of investigated sites by setting a range of susceptibility
rather than an absolute value: medium to very high or high to
very high. In addition, Holzer et al. �2002� have completed lique-
faction hazard maps for Alameda, Berkeley, Emeryville, Oakland,
and Piedmont, Calif. using the liquefaction potential index
�Iwasaki et al. 1978� based on 210 cone penetrometer tests.
Holzer et al. �2002� applied the liquefaction potential index �LPI�
to regional mapping by assigning approximate percentages of af-
fected area for each geologic unit. The mapped percentages were
found by finding the percentage of LPI values over 5 for each
geologic unit.

Liquefaction susceptibility or potential is generally assessed
on two scales: regionally based on surficial geologic unit or lo-
cally based on sample data �SPT, CPT, or Vs�. There have been
numerous studies focused on local liquefaction hazard across a
site �Robertson and Wride 1998; Holzer et al. 1999; Liao et al.
2002; Elkateb et al. 2003; Popescu et al. 2005�. Holzer et al.
�1999� evaluated several sites that experienced liquefaction dur-
ing the 1994 Northridge earthquake using the LPI and other meth-
ods. Liao et al. �2002� used CPT data to investigate several sites
in the New Madrid seismic zone where paleoliquefaction evi-
dence was found. The lateral heterogeneity was included using
cross sections for the site. Popescu et al. �2005� looked at the
effect of three-dimensional soil variability on liquefaction poten-
tial using Monte Carlo simulations with random fields in a non-
linear finite element analyses. They found that three-dimensional
soil variability is significant in evaluating liquefaction potential.
Elkateb et al. �2003� used geostatistics and CPT data paired with
stochastic Monte Carlo simulations to investigate the effect of soil
variability on liquefaction hazard.

A major goal of this project is to incorporate both local and

regional data in a single map. In this paper, we propose a method
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for quantifying liquefaction potential using statistical methods to
connect local and regional data. The proposed method will pro-
vide an estimate of the extent of liquefiable materials across a
geologic unit. Similar to Holzer et al. �2002�, we recognize that
liquefaction potential will have a distribution and that probability
methods are appropriate. We also recognize that soil deposits
from varying depositional environments and ages will have dif-
ferent distributions of liquefaction potential. In this study, we
evaluate our proposed method with a dense data set in Cambridge
where the surficial geology is artificial fill and the relevant sub-
strata include marine, fluvial, and estuarine sands. Liquefaction
has not been directly observed at the site; therefore the data set
does not have the same sampling bias that data sets acquired
for liquefaction studies might have �Toprak and Holzer 2003�.
However, we will not be able to calibrate our results to expected
damage; rather, this study will focus on liquefaction potential as
originally defined by Seed and Idriss �1971�.

Method of Study

Because lithologic and engineering properties of sediments can
vary significantly both laterally and with depth, it is necessary
to integrate surface and subsurface data to realistically depict
three-dimensional variations in liquefaction potential. The accu-
rate extrapolation of these properties away from known data
points �subsurface test borings� is an additional challenge; subsur-
face test boring data are usually unevenly distributed across the
study area, and the natural variability of soil properties within a
given geologic unit must be accounted for. We approach this issue
with a combination of techniques. First, geologic units are defined
on the basis of surficial mapping and geologist interpretation of
subsurface test borings. This allows for a first-order division of
soils into units with likely similar geologic and geotechnical prop-
erties. Next, we incorporate subsurface test boring data into the
regional mapping using statistical, probabilistic, and geostatistical
methods. We employ these techniques to assess the natural vari-
ability of properties within the geologic units. We investigate
spatial variation as well as population distribution. Finally, we
evaluate the relationship between sampling density and estimate
uncertainty.

Liquefaction Calculations

Liquefaction potential refers to the relative resistance of soils to
loss of strength due to an increase in pore water pressure caused
by ground shaking. The degree of resistance is governed primarily
by the soil’s physical properties such as grain-size, density, and
saturation. Liquefaction potential can be quantified according to
the adjusted SPT blow count �N1�60 values. A significant amount
of research on liquefaction potential has been based on the Seed
and Idriss �1971� simplified procedure which was reviewed and
updated in a workshop report summarized by Youd et al. �2001�.
These deterministic techniques have recently been adapted to a
Bayesian framework to develop a probability of liquefaction
function �Cetin et al. 2004�. We have used the following probabil-
ity of liquefaction function �Cetin et al. 2004� to represent lique-

faction potential for a given sample

ERING © ASCE / JUNE 2006



P�N1,60,CSReq,Mw,�v�,FC� = ��−

N1,60�1 + 0.0041FC� − 13.32 ln CSReq − 29.533 ln Mw − 3.70 ln
�v�

Pa
+ 0.05FC + 16.85

2.70
� �1�
where the input variables are corrected blowcount �N1,60�, fines
content �FC�; cyclic stress ratio �CSReq�; moment magnitude
�Mw�; and vertical effective stress ��v��. This probability function
is developed using a liquefaction field case history database
where uncertainties are defined for all input parameters �N1,60,
CSReq, Mw, �v�, and FC� �Cetin et al. 2004�. The CSR was calcu-
lated using the expected peak ground acceleration for 2% ex-
ceedence in 50 years according to the 2003 International Building
Code for the maximum credible earthquake in Cambridge, Mass.
The soil conditions at the site were classified as site class D. The
resulting PGA for this analysis was 0.24 g. A moment magnitude
of 6.5 was used for the maximum credible earthquake in Boston.
The fines content was assumed based on soil classification. If a
soil sample was above the measured water table for a boring �or
noncohesionless�, a probability of 0 was assigned. If the water
table was not measured, the depth to water table was set to the
ground surface which is a conservative value for this area.

Proposed Method for Liquefaction Potential

We use statistical, probabilistic, and geostatistical methods to
combine geotechnical data �local liquefaction probability values
based on SPT data� with regional geologic information for lique-
faction potential evaluation. We treat a delineated geologic unit as
a population that is sampled by subsurface test borings. Statistical
methods can be used to characterize a unit; however, they assume
that the unit is homogeneous. With a homogeneous assumption,
there is no estimate of the location or dispersion of the liquefiable
portion of the deposit. Geostatistical methods take into account
spatial correlation within a deposit. The proposed method follows
three steps: First, we characterize the liquefaction probability
population statistically. Standard statistics �mean, standard devia-
tion, etc.� as well as histograms are used to estimate the popula-
tion variability of liquefaction probability values. Second, we use
geostatistical methods to evaluate the spatial correlation of the
data set to determine if the data should be treated spatially or as a
homogeneous population. Third, if the data are spatially corre-
lated, ordinary kriging is used to interpolate liquefaction probabil-
ity values across the region with the goal of locally identifying
zones of highly liquefiable soils. Otherwise, the population statis-
tics are used to provide a global estimate of the distribution of
liquefiable materials with a measure of estimate uncertainty.

In a case study for Cambridge, Mass., we evaluated sampling
density by developing multiple random samples of varying size
from the original data set. We evaluated samples comprised of
200, 100, 50, 25, and 10 borings each. For each sampling density,
we took 100 random samples from the original data set. We cal-
culated the statistics of each population sample and the mean
statistics for a given boring sampling density. Using these results
and assuming the population follows a binomial distribution, we
determined the relationship between random sample size and un-

certainty in population statistics �mean, distribution�.
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Step 1: Statistical Description of Liquefaction
Probability

While mapping the surficial geology is a helpful first step in iden-
tifying potentially liquefiable units, a more useful quantitative
analysis of the soil properties is possible when test boring data are
available. With the goal of providing mapping criteria based on
the statistical distribution of liquefaction probability, we explored
the statistics of liquefaction probability within geologic units. Un-
fortunately, data from test borings are highly variable even within
a single geologic unit. Therefore, many test borings are needed in
order to fully classify the geologic unit—and that classification is
more of a distribution than a single value.

In order to evaluate the range of liquefaction probability val-
ues within a geologic unit, we used histograms. Although the
liquefaction probability calculations result in probabilities ranging
from 0 to 1, the tendency is for low �near zero� and high values
�near 1�. As a result, the probability of liquefaction can be seen
as a Bernoulli trial where outcomes are either high probability
of liquefaction �P�0.65� or not high probability of liquefaction
��0.65�. The 65% cutoff for high liquefaction probability was
based on recommendations by Chen and Juang �2000�. By assum-
ing that measuring the liquefaction probability of a soil sample is
a Bernoulli trial, each trial within a given geologic deposit has a
probability, p, of resulting in a high probability of liquefaction. If
we can assume that each Bernoulli trial is independent then the
sum of multiple Bernoulli trials results in a binomial distribution
with parameters p and n, number of trials.

The probability mass function for the binomial distribution can
be described by

pX�x� =
n!

�x!�n − x�!�
px�1 − p�n−x

where p=probability of a soil sample having a high probability of
liquefaction; and n=total number of soil samples evaluated. Here,
x=number of soil samples that are found to be within the high
probability category. The expected value of the binomial di-
stribution is given by E�x�=np and the variance is given by
Var�x�=np�1− p�. For large values of n, the binomial distribution
can be approximated by the normal distribution. The normal
approximation to the binomial distribution is given by

fx�x� =
1

�np�1 − p�
�� x − np

�np�1 − p�
	

where �� �=standard normal operator.

Step 2: Spatial Characterization of Liquefaction
Probability

Geostatistical methods provide an analytical approach to explore
spatial autocorrelation and provide an objective basis for deciding
whether or not an observed spatial pattern is significantly differ-
ent from random �O’Sullivan and Unwin 2003�. We propose the

use of the semivariogram to estimate the spatial correlation within
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the unit and when applicable �i.e., spatial correlation exists, see
Step 3� ordinary kriging to provide an estimate of clustering of
liquefiable materials.

The experimental semivariogram describes the spatial struc-
ture of the values at the sample locations, that is, the degree to
which nearby locations have similar values, or do not �O’Sullivan
and Unwin 2003�. The semivariogram is a plot of the variance
�one-half the mean squared difference� of paired sample measure-
ments as a function of lag distance between the data points as
shown in Fig. 1. The range value is the distance at which the
semivariogram plateaus and corresponds to the distance over
which sample points exhibit spatial autocorrelation. The plateau
that the variogram reaches at the range is called the sill value. The
sill value is equal to the variance of the population. The nugget
value is the y-intercept of the semivariogram and provides a mea-
sure of the short-scale variability of the data set. Short-scale vari-
ability is often associated with sampling or measurement error
and/or the inherent natural variability of the attribute. In an
“ideal” situation, the nugget is zero, since multiple values mea-
sured at the same location are expected to be equal. However,
with most natural data sets this is rarely the case. The ratio be-
tween the nugget and the sill is referred to as the relative nugget
effect and provides one measure of spatial correlation.

Step 3: Local Interpolation or Global Population
Characterization

The spatial structure determined in Step 2 using the semivari-
ogram helps to determine which approach to take in characteriz-
ing the population. If the semivariogram is flat �or near flat�
indicating that the relative nugget effect is near 100%, then the
best estimate of the population is the global estimate. In this case,
we will use the global mean and variance to describe the popula-
tion using the normal approximation to the binomial distribution.
If the relative nugget effect is low, than the spatial correlation can
be used to characterize the population.

The global estimate of the population distribution will rely on
the sample size and distribution as shown in Fig. 2. Rather than
providing a mean value to characterize the liquefaction potential,
the global estimate should include an estimate of the portion of
the population that has a high probability of liquefaction p̂ and an
estimate of uncertainty for p̂. Because the sample distributions
were generally binomial, either high or low probability, the esti-
mate uncertainty can be given by a confidence interval based on
the binomial standard deviation �SD�x�=�np�1− p�� which is a

Fig. 1. Typical semivariogram with nugget, sill, and range labeled
function of sample size, n, and p.
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If spatial correlation exists in the data set, we can use the
semivariogram to estimate a continuous interpolated surface of
liquefaction probabilities. This interpolated surface will help us
decide if specific regions within a given unit are more susceptible
than others. Kriging can be used to determine if the unit should be
subdivided to better represent liquefaction potential. To predict
values at unsampled locations, kriging methods use the semivari-
ogram model to assign weights to the neighboring sample values.
Kriging is often referred to as a “best linear unbiased estimator”
�BLUE�. It is “linear” because its estimates are weighted linear
combinations of the available data; it is “unbiased” since it tries
to have the mean residual equal to zero; and it is “best” because
it aims at minimizing the variance of the errors �Isaaks and
Srivastava 1989�.

To estimate a value at an unsampled location, a weighted sum
of the surrounding measured values is used according to the
following equation

ẑs = w1z1 + w2z2 + ¯ + wnzn = 

i=1

n

wizi �2�

where w1 to wn=set of weights applied to sample values, z1 to zn,
in order to arrive at the estimated value, ẑs �Isaaks and Srivastava
1989�. The weights are assigned to surrounding values using
the semivariogram model and the corresponding distance from
the measured value to the prediction location. Ordinary kriging, a
specific type of kriging that allows for local variation of the
mean, is used in this study. Each estimate also has an associated
standard error. When the standard error from the geostatistical
estimate is less than the global population standard deviation,
then the local estimate provides additional information and can be
used to evaluate spatial clustering of high liquefaction probability
soils.

The three-dimensional and anisotropic nature of soils can
complicate the kriging algorithm. For this study, we propose
evaluating the horizontal spatial correlation of the data set using
the maximum probability of liquefaction value for each boring
�within a geologic unit� in order to use two-dimensional geo-
statistics. An alternative to the maximum probability value would
be to use three-dimensional geostatistics �Dawson and Baise

Fig. 2. Population sampling
2005�; however, we chose to use two-dimensional methods for

ERING © ASCE / JUNE 2006



this application since the goal in liquefaction potential mapping is
a two-dimensional map.

Cambridge Case Study: Subsurface Test Boring
Database

Data from subsurface test borings were entered into an electronic
database in order to facilitate relational database management and

Fig. 3. Surficial geology and soil boring locations in Cambridge case
study area

Fig. 4. Cross-section A-A
JOURNAL OF GEOTECHNICAL AND
allow for the flexibility of data input. For the Cambridge study,
715 borings were collected in and near the Cambridge fill unit
along the shore of the Charles River. The boring locations from
the compiled database are shown in Fig. 3. The database includes
both general and geologic information gathered from subsurface
explorations, such as project and drilling information, date and
depth of test boring, ground surface elevation, depth to ground-
water, depths and descriptions of stratigraphic units and samples,
SPT N values, and x-y coordinate values. The soil samples are
characterized by a brief soil type �i.e., sand, silt, silty sand, clay,
etc.� and a detailed sample description. Geologic descriptions var-
ied considerably and were therefore simplified to be more consis-
tent throughout the region. The stratigraphic units for the area are
artificial fill, fluvial and estuarine deposits, marine sand, marine
clay, glacial till, and bedrock.

Case Study Results „Cambridge, Mass.…

Geologic Characterization

In addition to the boring locations and surficial geology, Fig. 3
shows the locations of two cross sections shown in Fig. 4. The
artificial fill in Cambridge was placed over former tidal marsh-
lands upon completion of a granite seawall in 1890 �Woodhouse
et al. 1991�. The artificial fill unit ranges from 0 to 8 m in thick-
ness across the study region with a typical thickness of 3–4.5 m.

B-B� as shown in Fig. 3
� and
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The bottom portion of the fill unit was obtained from the Charles
River Basin and consists of silt, sand, and clay-sized particles.
The fill was dredged from the river and pumped into the area
between 1890 and 1899 �Horn and Lambe, 1964�. Layers of arti-
ficial fill consisting of sand, silt, and clay-sized particles as well
as building debris and trash were placed on top of the hydraulic
fill at various times thereafter. The artificial fill unit in the Charles
River Basin is underlain by Holocene fluvial and estuarine sedi-
ments ranging from sands and silty sands to organic silts and
peats. The depositional environment of the artificial fill and
Holocene fluvial and estuarine sediments paired with the rela-
tively shallow groundwater table causes them to be potentially
prone to liquefaction. Below the fluvial and estuarine sediments
lies marine sand followed by a thick deposit of marine clay
known as Boston Blue Clay. Glacial till and bedrock underlie the
clay deposit.

Fig. 4 shows two cross sections across the site which identify
the potentially liquefiable units: artificial fill, fluvial and estuarine
deposits, and marine sand. The liquefaction probability categories
are also shown. The water table was often found at around
2–2.5 m depth near the boundary between artificial fill and the
fluvial and estuarine deposits. The liquefaction potential of the
artificial fill depends strongly on the location of the ground water
table. The deposit is generally loose and therefore potentially liq-
uefiable; however, because it is not always saturated, the lique-
faction potential is greatly reduced. The fluvial and estuarine
deposits are generally saturated and relatively loose; therefore the
liquefaction potential of the deposit depends on the material com-
position. The areas of high liquefaction probability are composed
of silty sands whereas the low probability regions are primarily
organic silts and peats. For the remainder of this paper, the fluvial

Table 1. Comparison of Sample Percentages

Geologic unit

Number
of

samples

High
probability

p�65%
�%�

Medium
probability

35% � P�65%
�%�

Low
probability
P�35%

�%�

Artificial fill 1,307 23.5 4.3 72.2

Fluvial and
estuarine sands

124 59.7 2.4 37.9

Marine sands 1,399 33.5 9.0 57.5

Fig. 5. Normalized histograms of liquefaction pro
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and estuarine deposits are separated into fluvial and estuarine
sands and fluvial and estuarine organic deposits. The liquefaction
potential is only evaluated for the fluvial and estuarine sands. The
marine sand varies in density and has both loose and dense re-
gions as seen in cross section A-A�.

Statistical Description of Liquefaction Probability

To look at the distribution of liquefiable materials in the sands,
histograms of probability of liquefaction values in the artificial
fill, the fluvial and estuarine sands, and marine sand are shown in
Fig. 5. The large number of zero probability values in the fill is
primarily associated with unsaturated samples in the upper por-
tion of the fill as well as some high blow counts. In the marine
sand, the zero probability values are most related to high blow
count values or cohesive materials. All three histograms have a
bimodal shape where most samples are either zero probability or
have a probability near one. As discussed above, the data can be
described by a binomial distribution. We used three categories to
describe the probability of liquefaction levels—high, medium,
and low—according to Table 1. The cutoff for high probability is
65% and the cutoff for low probability is 35%. Only the high
probability cutoff is used when the data are evaluated as a bino-
mial distribution.

The artificial fill, although placed loosely, is primarily unsat-
urated, leading to a large percentage of samples with low lique-
faction probability �72%�. The tidal fluvial and estuarine sands are
expected to be relatively loose as a result of their placement or
deposition, leading to high percentages of high liquefaction prob-
ability samples �60%�. If we look at the entire fluvial and estua-
rine deposit including cohesive soils, only 17% of the samples
have a high probability for liquefaction. The marine sand’s overall
liquefaction potential is similar to and somewhat higher than the
artificial fill �34% high for marine sand versus 24% high for fill�.
These results indicate that the susceptible layers should be evalu-
ated as three distinct units. The artificial fill and the marine sand
are pervasive across the area and their liquefaction potential will
affect all sites within the study area. The fluvial and estuarine
sands are not pervasive; however, when present, the probability of

y values for samples in the Cambridge study area
babilit
liquefaction is very high.

ERING © ASCE / JUNE 2006



Spatial Characterization of Liquefaction Probability

In order to further characterize the population, we needed to
evaluate the spatial distribution of liquefaction probability. If soil
sample values of liquefaction probability are spatially correlated
then we can use geostatistical interpolation to locally map the
liquefaction probability across the region. On the other hand, if
the individual soil sample values of liquefaction probability are
not spatially correlated, then the global characterization should

Fig. 6. Maximum liquefaction probability for �a� artificial fill; �b�
fluvial and estuarine stands; and �c� marine sands per boring
proceed based on population statistics.
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The spatial distribution of liquefaction probability values for
the artificial fill, fluvial and estuarine sands, and marine sands are
shown in Figs. 6�a–c�, respectively. Because each boring has mul-
tiple samples, the plots show the maximum liquefaction probabil-
ity value within the geologic layer for each boring.

Fig. 7 presents the semivariograms generated for the maxi-
mum liquefaction probability per boring for both the artificial fill
and the marine sand. The fluvial and estuarine sands are too in-
termittent for an estimate of spatial correlation. The range value
for the fill data set is approximately 150 m, indicating that beyond
150 m, there is no particular spatial structure in the data. For the
semivariogram the sill value for the artificial fill is approximately
0.2. The nugget value for the semivariogram is approximately
0.14, relatively high compared to the magnitude of the sill, lead-
ing to a relative nugget effect of 70%. The minimum spacing of
borings is near 10 m with few pairs while at 20 m spacing many
boring pairs exist. Therefore the large nugget may include some
spatial correlation that cannot be resolved below 20 m.

As compared to the fill unit, the spatial correlation of lique-
faction probability in the marine sand is far less. As shown in
Fig. 7, the semivariogram is relatively flat indicating little spatial
correlation �relative nugget effect=88%�. The nugget for the ma-
rine sand semivariogram is similar to that for the artificial fill
deposit. The lower sill exhibited by the marine sand as compared
to the artificial fill indicates that the overall variability of lique-
faction probability is less. A comparison of the spatial structure of
the two units indicates that the fill unit exhibits more spatial cor-
relation than the marine sand based on a lower relative nugget
effect. The relatively high nugget value for both units is indicative
of a large amount of short-scale variation associated with the data.
Since the liquefaction probability values are largely based on the
density of the sample, the large nugget values for both units are
likely associated with the high degree of inherent variability and
error associated with blow count measurements, as well as the
large degree of spatial variability in the vertical and horizontal
directions. As a result, spatial correlation is limited to less than
150 m in the fill unit and there is virtually no spatial correlation in
the marine sand. The relatively flat semivariogram leads to the
conclusion that the homogeneous layer assumption is more appro-
priate for the marine sand than a spatially correlated model.

Local Interpolation or Global Population
Characterization

For the fluvial and estuarine sands, the global population estimate

Fig. 7. Experimental semivariograms for maximum liquefaction
probability per boring in artificial fill and marine sand
is appropriate since the deposit is not spatially continuous. The
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marine sand has limited spatial correlation with a relative nugget
of 88%, so we opted to use global characterization for the
liquefaction susceptibility. The spatial correlation in the artificial
fill was also limited with a relatively high nugget value and
short range value �150 m� for a site that has a dimension of
2,500�1,000 m and typical boring spacing of 30–50 m. How-
ever, we evaluated the assessment of liquefaction probability
using geostatistical interpolation for the artificial fill by compar-
ing the global population variance to the estimated local variance
from ordinary kriging.

Fig. 8 shows the results of ordinary kriging of liquefaction
probability in the artificial fill. The colored areas in the figure
show the regions where the local estimate variance is smaller than
the global estimate variance. Even though the relative nugget
effect was high �70%�, variance reduction was achieved by the
local estimates near the central part of the data set. In the regions
without a local estimate, the global population estimate is more
reliable than the local estimate. From Fig. 8, we can now say
something about the spatial distribution of liquefiable materials in
the artificial fill. Several zones of high liquefaction probability are
shown on the map. These zones range from less than 100 m
across to approximately 300 m across. This result indicates that
the liquefiable materials are colocated within the artificial fill and
will present a hazard during the design earthquake.

Now that we can see the spatial distribution of the susceptible
samples, the regional classification is more clear. A summary of
the population characterization for the three geologic units is
given in Table 2. In the artificial fill �23.5% of samples have a
high probability for liquefaction for the design earthquake�, we

Table 2. Global and Local Liquefaction Susceptibility Estimates

Geologic unit

Global estimates

Local
estimation?

Mean, �
�%�

Standard
deviation, �

�%�

Artificial fill 23.5 1.3 Yes

Fluvial and
estuarine sands

59.7 6.7 No

Marine sand 33.5 1.6 No

Fig. 8. Interpolated map of liquefaction probability in the artificial
fill using ordinary kriging. The shaded areas on the figure show
the area where the local estimate �ordinary kriging� has a smaller
estimate variance than the population estimate.
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expect several 100–300 m zones of liquefiable materials scat-
tered throughout the fill unit. By evaluating the population using
the normal approximation to the binomial distribution, we can say
that the high probability estimate falls between 20.9 and 26.1%
with 95% confidence. The dense data set with 1,307 samples in
the artificial fill provides this tight confidence interval. According
to the local spatial estimates, the entire unit will not liquefy, but
liquefiable zones cover single sites as well as entire city blocks.
For the estuarine and fluvial sands, the unit is not pervasive across
the site. However, where it exists it is very likely to liquefy
�59.7% of samples with high probability� during the design earth-
quake. The 95% confidence interval for the fluvial and estuarine
sands �52–78%� is broader as a result of the low sample number
�124�. Again the zones of material are small but will likely be
large enough to impact overlying structures. Finally, the marine
sand is also highly liquefiable �33.5% of samples with high prob-
ability� with zones of collocated liquefiable materials that may
impact sites throughout the mapped geologic unit. The 95% con-
fidence interval for marine sand is similar to that for artificial fill
�30.4–36.6%�.

Random Sampling

The characterizations presented above include 715 borings. A col-
lection of that many borings densely spaced is not realistic for
many liquefaction mapping projects; therefore one goal of this
study was to determine how many borings would be necessary to
characterize a regional geologic unit. Our study is based on three
geologic units present in the case study region: artificial fill, flu-
vial and estuarine sands, and marine sands. By selecting a random
sample of borings and then statistically quantifying the results of
the liquefaction probability for that population, we can validate
that the normal approximation to the binomial distribution ad-
equately characterizes the population. We will assume that the
entire sample of 715 borings is enough to provide an accurate
estimate of the population; and therefore we set out to confirm the
relationship between sample size and confidence in estimating the
distribution of the liquefaction probability. As discussed earlier,
each of the random samples can be described by a Bernoulli trail
and repeated trials can be described by the binomial distribution,
where p fully characterizes the distribution. As discussed before,
for a large number of trials, n, the binomial distribution can be
approximated by the normal distribution. By taking repeated ran-
dom samples from the original population, we can estimate p and
confirm that SD�x�=�np�1− p� can be used to describe the esti-
mate uncertainty. Fig. 2 illustrates how each random sample has a
binomial distribution and how for repeated samples the probabil-
ity density function tends towards a normal distribution which can
be used to estimate the percentage of high probability samples
within the unit and the estimate variance as it relates to the
sample size.

In order to validate the relationship between the number of
samples needed and the confidence in the estimate of population
distribution for all three geologic units, random samples of de-
creasing size were taken from the original population of 715 bor-
ings. Fig. 9 shows the results for 100 random samples of 10
borings, 50 borings, and 200 borings as histograms of estimated
p, the percentage of samples within the high probability catego-
ries for the artificial fill. The estimated binomial distribution
based on a single realization is shown �using the average p for
100 random samples�. Out of 100 random samples of 10 borings,
the estimated population of high probability values ranges from 0

to 57% with a mean of 24%. As expected, the histogram for
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estimated population mean is significantly narrower with a 200
boring sample �standard deviation=1.9%� rather than a 10 boring
sample �standard deviation=11%�. Table 3 summarizes the results
for all three geologic units for five sample sizes �200, 100, 50, 25,
and 10 borings�. The binomial estimates of the distribution based
on the mean high probability percentage and the average number
of samples per boring set are also shown. For the marine sand, the
binomial estimates tend to be lower than the estimates based on
100 random sets as the population size gets smaller. Overall, the
agreement between the binomial estimates and the estimates
based on 100 random sets is good. For artificial fill, the standard
deviation jumps from 5% with 50 borings to 12% for 10 borings.

The population of mean probability estimate can be approxi-
mated by the normal approximation to the binomial distribution,

Table 3. Comparison of Mean Population Estimates for 100 Random Sa
Mean�

Sample size

Artificial fill

Results from 100
random samples

Assume
distr

Number of
samples

High probability
P�65%

High proba
P�65%

�
�

�%�
�

�%�
�

�%�

200 borings 369 23.3 1.9 23.3

100 borings 183 23.5 3.8 23.5

50 borings 92 23.8 5.1 23.8

25 borings 45 23.8 7.0 23.8

10 borings 19 23.6 11.4 23.6

Fig. 9. Probability density functions �based on histograms� of
average sample distributions for high probability of liquefaction for
100 random sets of 10, 50, and 200 borings for the artificial fill. The
estimated normal approximation to the binomial distribution �based
on the sample size and mean p for 100 random sets� is shown.
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especially for the larger boring samples as shown in Fig. 9. For
the marine sand, the distribution for probability categories from
different samples sizes are shown in Fig. 10. The standard devia-
tions for the estimates range from 4.2% for 100 boring samples to
10% for 25 boring samples.

In terms of characterizing the population, not all 715 borings
are necessary to provide a reasonable estimate of the population.
By describing the population of high liquefaction probability soil
samples as a binomial distribution, a direct evaluation of estimate
uncertainty can be made. It is important to be cognizant of the
increase in population estimate uncertainty as it relates to decreas-
ing sample size. The estimate uncertainty is a function of p and n,
where p determines location of the estimate and both p and n
affect distribution width.

and Assumed Binomial Distribution �Based on Sample Size and Sample

Marine sand

ial Results from 100
random samples

Assumed binomial
distribution

�
�%�

Number of
samples

High probability
P�65%

High probability
P�65%

�
�

�%�
�

�%�
�

�%�
�

�%�

2.5 390 33.1 2.9 33.1 2.9

3.6 194 33.5 4.2 33.5 4.2

5.1 99 32.8 6.4 32.8 5.8

7.3 49 34.3 9.6 34.3 8.4

11.1 21 34.4 13.6 34.4 12.8

Fig. 10. Probability density functions using the normal approxima-
tion to the binomial distribution based on estimated p and n for 100
random sets of 10, 25, 50, 100, and 200 borings for the marine sand.
mples

d binom
ibution

bility
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Regional Mapping Criteria

One goal of this research is to integrate data from test borings
with surficial geology to produce a two-dimensional map of liq-
uefaction potential. By characterizing susceptible units according
to probability distributions and spatial variability, we have gath-
ered insight into the variability of liquefiable materials in a de-
posit and how best to characterize that deposit. When a limited
number of borings is available, it is important to consider the
limited confidence in estimating the population distribution.
Using the normal approximation to the binomial distribution, the
estimate uncertainty can be evaluated using n and an estimate of
p. When insufficient boring data are available, criteria based on
surficial geology should be used. When possible, liquefaction haz-
ard mapping criteria should be linked with an estimate of how
much of the unit is liquefiable by developing an estimate of the
population probability distribution and the spatial distribution of
liquefiable materials.

Summary and Conclusions

We outline a three step method for characterizing geologic units
for liquefaction potential. The three steps include: statistical char-
acterization of the distribution, spatial characterization of the
population, and global and local �when possible� characteriza-
tions. When spatial correlation is sufficient, local spatial interpo-
lation can be used to determine collocation of liquefiable
materials. Either way, a global characterization can be made from
the sample population. By characterizing liquefaction probabili-
ties as a binomial distribution �high or not high�, we can provide
a direct evaluation of estimate uncertainty as a function of sample
size �and percent high probability�. In addition, we validated the
effect of sample density by taking a series of 100 random boring
samples for 10, 25, 50, 100, and 200 borings. Because each ran-
dom sample could be evaluated as a Bernoulli trial where p is the
probability of a soil sample having a high liquefaction probability,
repeated samples follow a binomial distribution. The results were
evaluated using the normal approximation to the binomial distri-
bution. The binomial distribution for a particular unit and sample
size provides useful information on the effect of sample size and
estimate uncertainty.

The liquefaction potential in the Cambridge case study was
evaluated for three distinct units. The loosest material was the
fluvial and estuarine sands in the fluvial and estualine deposit
below the artificial fill. This unit has a high probability of lique-
faction for the design earthquake �59.7% of samples with ��6.7�;
however, this unit is not pervasive across the site. The artificial fill
is also highly susceptible to liquefaction with 23.5% of the
samples having a high probability of liquefaction and ��1.3. In
terms of the samples in the marine sand, 33.5% of the samples
have a high probability of liquefaction for the design earthquake
and ��1.6. All three deposits are expected to liquefy in signifi-
cant zones during the design earthquake. These zones will range
in size from a single site to a city block �as seen in Figs. 6 and 8�.

The results of this study illustrate the large degree of variabil-
ity of liquefaction potential within geologic units and highlight
the need for an evaluation of spatial and population variability
when developing regional liquefaction hazard maps. The sam-
pling density study provides a method for evaluating the liquefac-
tion potential estimate uncertainty associated with a given sample

size. Future liquefaction hazard mapping projects need to address
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the issues of sample size and geologic variability in order to make
the resulting maps accurate and informative.
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